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Abstract
In the perfect magnesium aluminate spinel structure all the tetrahedral sites are
occupied by Mg2+ ions, while Al3+ ions occupy all the octahedral sites. Real
MgAl2O4, however, exhibits cation disorder (inversion), so that some Mg2+ ions
reside in octahedral sites with an equal number of Al3+ ions in tetrahedral sites.
Atomistic simulation was used to correlate the degree of inversion with changes
in lattice parameter. Results from several approaches, including a combined
energy minimization–Monte Carlo technique (CEMMC), are compared with
available experimental data. These show that the mean field method is not
useful, while the defect volume approach can yield predictions that are useful
in interpreting the CEMMC results, which agree most closely with experiment.

1. Introduction

Magnesium aluminate (MgAl2O4) spinel has demonstrated a strong resistance, under
irradiation, to the formation of large defect aggregates such as dislocation loops and
voids [1]. Given this resilience, the likelihood of radiation induced swelling and microcrack
formation is dramatically suppressed. Consequently, MgAl2O4 has the ability to withstand
neutron irradiation over a wide temperature range without degradation of its mechanical
properties [2–4], whereas conversely it does amorphize under fission tracks [5]. Spinel is
therefore being considered for applications which would exploit its radiation tolerance. These
include use as an insulating and structural material in fusion reactors [6] and as an inert matrix
target material in the nuclear transmutation of radioactive actinides [7, 8].

The ability of spinel to tolerate radiation damage is thought to be a result of two factors. The
first is a high interstitial–vacancy (i–v) recombination rate [1]. The second factor is the ability
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Figure 1. A single unit cell of normal MgAl2O4 spinel showing a tetrahedral Mg2+ coordinated
by four O2− ions corner linked to a cube composed of four octahedral Al3+ and four O2− ions.

(This figure is in colour only in the electronic version)

of the lattice to tolerate significant intrinsic antisite disorder on the cation sub-lattice [9–11]
as described by equation (1).

Mg×
Mg + Al×Al → Mg′

Al + Al·Mg. (1)

This is supported by neutron diffraction data from stoichiometric spinel which demonstrated
significant cation disorder in a sample exposed to a high radiation dose (249 dpa at 658
K) [1]. Recent atomistic simulations of displacement cascades in spinel also resulted in high
concentrations of cation antisite defects, often grouped as clusters [12]. It is, however, difficult
to correlate such simulation results directly with the experimental data. One therefore needs
an observable related to defect formation that can be calculated in a simulation and used to
evaluate the efficacy of the method.

1.1. Inversion parameter

The extent to which the cation sub-lattice is disordered (as in equation (1)) is quantified by the
inversion parameter i , the fraction of Al3+ cations occupying tetrahedral sites. As such, i can
vary from zero, which correlates to a perfect normal spinel with all Mg2+ atoms on tetrahedral
lattice sites, to unity, which refers to an inverse structure where all tetrahedral lattice sites
are occupied by Al3+ ions. This is formally expressed as (Mg1−i Ali)[Mgi Al2−i ]O4 where
parentheses refers to the tetrahedral sites and square brackets to the octahedral sites. The
structure of the cation sub-lattice and the position of the cation sites with respect to the oxygen
ions is displayed in figure 1.

It only requires a few minutes of equilibrating synthetic samples at high temperatures
followed by quenching to induce sufficient cation exchange to raise the inversion parameter
from 0.1 to values between 0.2 and 0.6 [13]. The variation of lattice parameter with respect
to disorder has been shown to be small: a change in i of 0.1 modifies the lattice parameter by
just 0.0025 Å [14, 15].

Natural spinel, which has been able to equilibrate over geological timescales, might be
expected to have a value of i approaching zero. This is somewhat reflected in the literature,
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Table 1. Short-range potential parameters.

Species A (eV) ρ (Å) C (eV Å−6)

O2–O2− 9547.92 0.2192 32.00
Al3+–O2− 1361.29 0.3013 —
Mg2+–O2− 1279.69 0.2997 —

where experimental inversion parameters vary in the range 0.025 � i � 0.12 [16–18].
Unfortunately none of these studies reported an associated lattice parameter. Conversely
the study of Hafner et al [19] reports the lattice parameter of natural spinel to be 8.089 ±
0.0005 Å but gave no indication as to the degree of inversion. When we compare our predictions
to this lattice parameter we assume an inversion in the range 0.025–0.12.

1.2. Order–disorder in MgAl2O4

Here, atomic scale computer simulation models based on empirical potentials are shown
to be capable of predicting variations in the MgAl2O4 spinel lattice parameter with cation
antisite disorder (albeit with varying degrees of success). We examine disorder using a
variety of analyses, including a mean-field approach, the calculation of defect volume and
a novel combined energy minimization–Monte Carlo (CEMMC) technique [20, 21]. In all
these cases, the simulations use energy minimization techniques and effective potentials to
describe the forces between ions. The potentials were derived by fitting to room temperature
structural data taken from a number of materials including MgO, Al2O3 and perfect MgAl2O4

(extrapolated from [14]). Consequently, we compare our results to the quenched room
temperature experimental data of Andreozzi et al [14] and Docherty et al [15] on synthetic
materials and the derived data described above on natural spinel [19].

2. Methodology

2.1. Pair potential simulations

The calculations presented here are based upon a classical Born-like description of an ionic
crystal lattice [22, 23]. The crystal is composed of an infinite array of isotropic spherical point
charges. Forces acting between ions are resolved into two terms: long-range Coulombic forces,
summed using Ewald’s method [24], and isotropic short-range forces, which are modelled using
parametrized pair potentials. The perfect lattice is defined by a unit cell, which is effectively
repeated through all space using periodic conditions.

The lattice energy, E(ri j), can then be expressed as

E =
n∑

j>i

n∑
i=1

[
1

4πε0

qi q j

ri j
+ Ai j exp

(−ri j

ρi j

)
− Ci j

r6
i j

]
(2)

where A, ρ and C are parameters specific to the pair of ions i and j , ri j is the interionic
separation and qi is the full formal charge of ion i . The parameters employed in this study are
shown in table 1.

Defect calculations, to be used in the defect volume approach, use the Mott–Littleton
methodology within which the lattice is partitioned into three concentric spherical regions,
centred around the defect [25]. In region I ions are treated explicitly and relaxed iteratively
to zero strain via a Newton–Raphson procedure. Region IIa is an interfacial region in which
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the forces between ions are determined via the Mott–Littleton approximation [25] and ions
are relaxed in one step. The interaction energies between the ions of region IIa and region I
are calculated explicitly. Finally, the outer region IIb is effectively a point charge array whose
relaxation energy is determined using a dielectric continuum treatment. Region IIb provides
the Madelung field for the remaining crystal.

Electronic polarizability is included via the shell model for oxygen ions [26]. This assumes
a massless shell with charge −2.8|e| coupled to a core of charge 0.8|e| via an isotropic harmonic
force constant 54.8 eV Å−2. The net charge state of the oxygen ion is thus −2.0|e|. All other
ions are represented by single point charges.

2.2. Predicting lattice parameter as a function of disorder using pair potentials

We now review the four methods employed for calculating lattice parameter as a function of
defect concentration.

2.2.1. Periodic pair potential calculations. As described in section 2.1, a perfect lattice is
described by identifying the ion positions within a unit cell and then repeating this through
space using periodic conditions. If, in a single unit cell consisting of 56 ions, all tetrahedral
sites are occupied by Mg2+ cations, a zero inversion (i = 0) perfect lattice results. If one Mg2+

tetrahedral cation is swapped for a near neighbour octahedral Al3+ cation, by virtue of the
periodic conditions, we have introduced a degree of disorder into the lattice corresponding to
the value i = 0.125. If two adjacent pairs are swapped, i = 0.25, and if three adjacent pairs,
i = 0.375. The defect arrangements used for these calculations are defined in the appendix.
Through energy minimization these calculations therefore provide us with four values of the
spinel lattice parameter corresponding to four values of inversion parameter. Inherent in
these calculations are intra-cluster defect–defect interactions, albeit specific to these cluster
configurations. In addition, because of the periodic conditions, there are inter-cluster–cluster
interactions.

2.2.2. Calculation of defect volumes. Local relaxations induced by defects can generate a
significant expansion or contraction of the unit cell. This change in volume is specific to the
type of defect and can be modelled by application of the following formula [27–29]:

ν = −KT Vc

(
∂ fv
∂Vc

)
T

, (3)

where KT (Å3 eV−1) is the isothermal compressibility, Vc (Å3) is the unit cell volume of
the perfect lattice and fv is the internal defect formation energy calculated within the Mott–
Littleton approximation.

For a cubic system, the isothermal compressibility is readily obtained from
equation (4) [30],

KT = [1/3(c11 + 2c12)]−1 (4)

where c11 and c12 are the calculated elastic constant matrix elements. The partial derivative in
equation (3) is determined numerically by conducting a series of constant volume calculations.
The final unit cell volume can be established by adding the defect volumes for a given defect
concentration (equivalent number of defects in a unit cell) to the perfect unit cell volume.

Defective unit cell vol. = �(ν × number of defects per unit cell) + Vc (5)
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where the defect volume is evaluated from equation (3). Thus, a prediction of the defect
volumes generates a linear change in lattice parameter as a function of defect concentrations
(inversion).

Since defect energies are calculated at the (Mott–Littleton) dilute limit a potential problem
with this technique is that we completely neglect the effect of defect–defect interactions, which
are likely to become increasingly important at elevated degrees of disorder. Therefore, we use
the same technique, but consider the defect volume created by an adjacent pair of defects
{Mg′

Al:Al·Mg}, two pairs of defects and lastly three pairs of defects, that is, the same cluster
configurations as invoked in section 2.2.1. These latter cluster cases include the effect of intra-
cluster defect–defect interactions but do not include longer range inter-cluster interactions, as
the defects are no longer repeated via periodic conditions.

2.2.3. Combined energy minimization—Monte Carlo (CEMMC). A comprehensive study
of cation disorder in spinel is problematic; even within a single unit cell there are 735 471
possible configurations for disorder on the cation sub-lattice. Identifying and calculating the
energies of each configuration would be a mammoth task. The CEMMC technique allows us
to intelligently sample the possible degrees of disorder and through configurational averaging
make predictions of macroscopic properties dependent upon these configurations. It has been
demonstrated previously that the technique can simulate Al–Fe disorder involving uncharged
defects in a study of Ca2Fex Al2−x O5 brownmillerite over the whole compositional range
0 � x � 2.0 [20, 21]. As is shown in the present study, the method is also successful in
simulating systems containing charged defects.

Energy minimization is used to obtain the energy and lattice properties for multiple
arrangements for Mg and Al within a periodically repeated supercell (i.e. not just the four
arrangements in section 2.2.1) constructed from either 1 × 1 × 1 or 2 × 1 × 1 unit cells of
stoichiometric MgAl2O4 (which contain 56 and 112 ions respectively). The arrangements are
generated using the Metropolis statistical sampling Monte Carlo technique [20] as follows.
At a given iteration the system has the cation configuration µ of energy Eµ. Two randomly
chosen cations are then exchanged, forming a new configuration ν. The lattice is reminimized
and the new energy, Eν , is calculated and the new configuration is adopted in place of the old
with probability W :

Wµ→ν =

 exp

−�E

kT
, �E > 0

1, �E < 0
(6)

where T is the simulation’s target temperature, k is Boltzmann’s constant and �E = Eν − Eµ.
Within this scheme the expectation value of the quantity Q is given by

〈Q〉 =
∑

µ Qµ Nµ∑
µ Nµ

, (7)

where Q takes the value Qµ for configuration µ. The value Nµ is the number of times
configuration µwas chosen, either because it had been swapped into from another configuration
or because it was the incumbent configuration during a failed swap attempt [20, 21].

In order to generate different overall degrees of disorder different target temperatures
were employed (clearly a higher temperature gives rise to a greater overall degree of disorder).
For each target temperature 6000 swap attempts (as opposed to successful swaps) are made.
It was found that further increasing this number did not significantly change the inversion
parameter [31].

It is stressed that contributions to the free energy of the system by lattice vibrations
are included only through the quasi-harmonic approximation, for the temperature at which
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potential parameters were fitted, that is room temperature. Therefore, the simulation
temperatures served only to generate different degrees of average disorder and correlate to
the material properties at room temperature, not at the simulation temperature. This implies
that comparison should be made with experimental data derived from samples which have
been quenched rapidly, thereby ‘freezing in’ disorder such as data from [14] (as opposed to in
situ data, which would require a molecular dynamics approach such as that used recently by
Lavrentiev et al [32]).

2.2.4. Mean field approximation. The mean field theory attempts to approximate the effect
of all possible disorder by applying, between each pair of sites, a potential that is the mean of
the potentials arising from all possible configurations. That is, the mean field approximation
averages the potential at each lattice site with respect to the degree of disorder. While the
computational ease of this method makes it desirable, it is flawed in two respects. First, it
assumes all configurations are equally likely. Second, it assumes an averaged ion charge per
site commensurate with the degree of disorder. The mean field analysis was conducted using
the GULP code [33].

2.3. Periodic density functional calculations

In addition to pair potential simulations density functional calculations (DFT) were undertaken
using the plane wave code CASTEP [34]. Due to computational restrictions calculations could
only be carried out on the four configurations described in section 2.2.1, in a single unit cell,
consisting of 56 ions. The system was modelled at the GGA level of approximation using
the PBE functional [35] and also assuming the LDA using the CA-PZ functional [36, 37]. In
both cases ultrasoft pseudopotentials were employed and a 380 eV plane wave cut-off. The
Brillouin zone was sampled on a 4 × 4 × 4 Monkhorst–Pack grid [38].

The aim of carrying out these quantum mechanical simulations is to provide a direct
comparison to pair potential simulation (specifically those of section 2.2.1) and as such act as
a further test of the potentials.

3. Results and discussions

3.1. Periodic condition simulations using DFT and pair potentials

Figure 2 compares the predicted variation in lattice parameter with increasing antisite disorder
found via density functional and pair potential calculations using identical unit cell repeat units
(see section 2.3). The GGA and LDA DFT calculations (square symbols and triangle symbols)
overestimate the perfect spinel cell volume by 0.85% and 0.20% respectively (as can be seen
from the comparison with the experimental data; crosses and star). A comparison of the DFT
and pair potential techniques is nevertheless useful; both predict that the lattice parameter
decreases slowly as the number of antisite pairs is increased. The GGA calculation shows a
noticeably greater fall in lattice parameter between zero and one antisite pair than between
subsequent points, which is not reproduced either by the LDA or by the pair potentials. It is,
however, important to note that for all cases the total change in lattice parameter over the range
considered is less than 0.25%.

3.2. The mean field approach

Results of the mean field analysis are presented in figure 3. Although this technique correctly
predicts a negative gradient in lattice parameter as a function of inversion, the magnitude of
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Figure 2. Variation in lattice parameter with inversion for specific defect cluster configurations
containing, respectively, no, one, two and three antisite pairs. The solid square symbols correspond
to GGA DFT calculations, the solid triangles to LDA DFT calculations, the open circles to pair
potential calculations and the experimental data are represented as crosses [14], crossed circles [15]
(synthetic samples) and a star [19] (natural sample).
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Figure 3. Variation in lattice parameter with inversion predicted using a mean field analysis. This
shows significant deviation in slope from the experimental data [14, 15, 19].

this gradient is many times greater than that of the experimental data. This discrepancy is the
result of overestimating the Coulomb interactions as a function of increasing disorder, which
leads to lattice contraction.

3.3. Defect volume predictions

Figure 4 shows the results generated via the technique described in section 2.2.2. As it relies on
multiplying the volume of a chosen defect configuration by the defect concentration, it requires
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Figure 4. Variation in lattice parameter with inversion as predicted using defect volume analysis.
The experimental data of Andreozzi et al [14], Docherty et al [15] and Hafner et al [19] are included
for comparison.

Table 2. Defect volumes as predicted from equation (3).

Cluster Volume (Å3)

Al·Mg −0.683

Mg′
Al 0.606

{Al·Mg:Mg′
Al} −0.348

2{Al·Mg:Mg′
Al} −0.885

3{Al·Mg:Mg′
Al} −1.419

an a priori assumption as to what this defect should be. Here, results are shown assuming an
isolated pair of Mg′

Al and Al·Mg defects, then progressively larger clusters of one, two and three
nearest neighbour antisite pairs (as previously emphasized, these configurations are the same
as those used for the DFT and equivalent pair potential cluster calculations). The predicted
volumes are reported in table 2.

As with the other techniques, this approach is also able to reproduce the small negative
gradient of the experimental data. Within these defect volume predictions a trend can be
seen, in that the results become progressively closer to the experimental data on synthetic
materials as the size of the cluster increases (see figure 4). Beginning with isolated defects
the volumes cancel out to a significant extent (see table 2), suggesting negligible change in the
lattice parameter with increasing disorder. We would, however, only expect the defects to be
isolated for the very lowest values of inversion, i , when configurational entropies dominate.
Conversely, the experimental data for synthetic materials correspond to a defect regime where
defect–defect interactions are inevitably significant. Indeed, even the data for the natural spinel
compares best to the prediction assuming cluster formation.

These results suggest that a modestly sized cluster can represent the majority of the effect
that defect–defect interactions have on lattice parameter change. Of course, it should be noted
that in this system the change in lattice parameter is rather small, thus this cluster approximation
does not have to account for a great change in lattice parameter.
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Figure 5. Variation in lattice parameter with inversion as predicted using CEMMC analysis. The
experimental data of Andreozzi et al [14], Docherty et al [15] and Hafner et al [19] are included
for comparison.

3.4. Combined energy minimization—Monte Carlo (CEMMC) predictions

In practice the lattice can be considered to contain many clusters of varying sizes in differing
proportions, all of which interact. The aim of the CEMMC technique is to sample a
representative distribution of defects that can reproduce the effect of such a complex system.
It was found (see figure 5) that this method was able to reproduce the experimental data
better than the other methods. Interestingly, the gradient of the results reproduced using the
smaller supercell (1 × 1 × 1) is slightly greater than that of the experimental data for synthetic
materials. Results derived using the 2 × 1 × 1 supercell lie very close to these experimental
results. Considering the analysis of the defect volume method, this suggests that defect–defect
interactions are exaggerated by the confined 1 × 1 × 1 supercell. Extension to a larger system
size, such as a 2 × 2 × 1 supercell, though desirable, is prohibited by the computational cost.

The CEMMC method allows us to predict the variation in lattice parameter over a wider
range of inversion parameter than studied in [14, 15]. Furthermore, whereas the mean field
and defect value analyses necessarily produce linear relationships for lattice parameter as a
function of inversion, the CEMMC method is capable of predicting a nonlinear variation.
Nonlinearity is indeed observed (figure 5), though its extent is modest. The shape of the curve
predicted from the CEMMC data can be rationalized in terms of the defect volume results. At
low degrees of disorder the constituent defects are likely to be in pairs (or even isolated) for
entropic reasons. The variation of lattice parameter with inversion will therefore tend to follow
the second line in figure 4. As defect concentrations increase, the variation will tend towards
the lower two lines in figure 4. The result is a downwards curvature as observed in figure 5.

4. Summary

MgAl2O4 is usually described as having a normal spinel structure in which case all the Mg2+

ions should occupy all of the tetrahedral sites and the Al3+ ions should occupy all of the
octahedral sites. In reality there is a significant and variable degree of mixing [17] between
these cations. This is known as antisite disorder and for MgAl2O4 results in a modest reduction
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of the lattice parameter. The degree of mixing (inversion) depends on the thermal history of
the material.

Here we have described four approaches to modelling the effect of antisite disorder on the
lattice parameter. These increase in statistical or computational complexity from a simple mean
field method, a restricted configurational supercell approach, a calculation of defect volume
applied to a consideration of defect concentration and finally a configurational averaging via a
Monte Carlo simulation. In each case forces between ions were described by pair potentials,
although the supercell calculations were repeated using GGA and LDA DFT methods.

The CEMMC method, which uses a Monte Carlo approach to generate defect
configurations and statistically averaged lattice parameter, best reproduced the experimental
data. These results suggest a slight non-linear variation in lattice parameter as a function
of inversion that is not possible to discern from the experimental data. Such behaviour can
be anticipated from the defect volume calculations that suggest greater variation in lattice
parameter with increasing cluster formation (as would inevitably occur with greater degrees
of inversion). The mean field approach that assumes an average distribution of Al3+ and Mg2+

ions commensurate with a given inversion is shown to yield much less satisfactory results.
In conclusion, the results demonstrate that a statistically derived distribution of charged

antisite defects can reproduce the experimentally observed variation in lattice parameter. A
method based on pair potentials is thus able to model certain residual defects in MgAl2O4 that
are formed as a consequence of radiation damage. It does not, of course, establish that the
methodology is able to model the dynamical processes whereby the defects are formed. As a
step towards this, we will subsequently model ion migration in this system.
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Appendix. Defect positions within a single unit cell

If the MgAl2O4 spinel structure is described using the space group Fd3m, in the normal
(defect free) lattice Mg2+ and Al3+ cations occupy 8a and 16d Wyckoff positions respectively
(see table A.1).

Table A.1. Perfect lattice positions in normal MgAl2O4.

Species Wyckoff position Fractional coordinates

Mg 8a 0,0,0; 1/4, 1/4, 1/4; F.C.
Al 16d 5/8, 5/8, 5/8; 5/8, 7/8, 7/8; 7/8, 5/8, 7/8; 7/8, 7/8, 5/8; F.C.

Table A.2. Defect coordinates for arrangements of two and three antisite pairs.

Configuration Wyckoff position Defect species Defect coordinates

2{Al·Mg:Mg′
Al} Al·Mg 8a 1/4, 1/4, 1/4; 3/4, 1/4, 3/4

Mg·
Al 16d 5/8, 1/8, 1/8; 3/8, 1/8, 7/8

3{Al·Mg:Mg′
Al} Al·Mg 8a 0, 1/2, 1/2; 1/2, 0, 1/2; 1/2, 1/2, 0

Mg·
Al 16d 5/8, 1/8, 1/8; 1/8, 5/8, 1/8; 1/8, 1/8, 5/8
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There is only one distinct way of arranging a nearest neighbour antisite cluster. For the
larger clusters of two and three nearest neighbour antisite pairs the defects can be placed in
multiple distinct arrangements. The defect coordinates used in this study are listed in table A.2.
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